INTRAVENOUS ANESTHETICS

Mark J. Harris M.D Department of Anesthesiology University of Utah

Pharmacokinetics

= the quantitative study of the absorption, distribution, biotransformation, & excretion of injected drugs and their metabolites.

i.e. *what the body does to a drug*.
determines intensity of the drug's effects with time.
determines variability in responses

Problems with Pharmacokinetics Study healthy lean adults • But, drugs administered to patients with chronic diseases at various extremes of age, hydration, & nutrition. • GA / surgery alters PK because alters: renal / hepatic blood flow hepatic enzyme activity.

Drug Distribution

	Body Mass (% of 70-kg adult)	Blood Flow (% of cardiac output)
Vessel-rich group (heart, brain, kidneys, liver)	10	75
Muscle group	50	19
Fat group	20	6
Vessel-poor group (bone, skin)	20	<1

Rate & Capacity of Tissue Uptake

DETERMINANTS OF TISSUE UPTAKE	DETERMINANTS OF STORAGE CAPACITY
Blood flow	Solubility
Concentration gradient	Tissue Mass
Blood-brain barrier	Binding to macromolecules
Drug physico-chemical properties	pH
Ionization	
Lipid solubility	
Protein binding	

Volume of Distribution (V_d)

= a mathematical expression of the sum of the apparent volumes of the compartments that constitute the compartmental model.

iv dose

resulting plasma concentration (before elimination)

Volume of Distribution

V_d is influenced by physicochemical characteristics of the drug, including :

- 1. lipid solubility
- 2. binding to plasma proteins
- 3. molecular size.

Alterations in Protein Binding

Usually important only for drugs that are *highly* protein bound (e.g. warfarin, diazepam).

Determinants of Protein Binding

- 1. Lipid solubility of drug
- 2. Drug's plasma concentration
- 3. # available binding sites on protein
- 4. Competition from other substances (e.g sulfonamides *vs* bilirubin)
- 5. Disease states(e.g. renal, hepatic failure, surgery, MI)

Clearance

= volume of plasma cleared of drug by excretion and/or metabolism.

Metabolism

Liver
Plasma
Lungs
Kidneys
GI tract

Pharmacologically active, lipid-soluble drugs

Metabolism

H₂O-soluble metabolites

pharmacologically inactive?

Renal Excretion

 Kidney = most important organ for elimination of unchanged drugs or metabolites.

• H_2O -soluble excreted > lipid soluble.

Drug elimination correlates with:

- endogenous creatinine clearance
- serum creatinine concentration.

Elimination Half-Life

= time necessary for the plasma concentration of drug to decline 50% during the elimination phase.

∝ V_d
∝ ¹/_{clearance}
independent of drug dosage.

Pharmacodynamics

= the study of the intrinsic sensitivity or responsiveness of receptors to a drug and the mechanisms by which these effects occur i.e. what a drug does to the body. Structure-activity relationships link the actions of drugs to their chemical structure. Variability exists in the intrinsic sensitivity of receptors among patients.

Receptors

 Receptors are identified & classified primarily by :

- 1. the effects of specific antagonists
- ². the relative potencies of known agonists.

Multiple subtypes exist for many receptors.

Receptor concentration is dynamic

Potency

Influenced by:
1. absorption
2. distribution
3. metabolism
4. excretion
5. receptor affinity

Clinically, potency is irrelevant if drug's effective dose can be administered conveniently.

Efficacy

- Efficacy = concentration → maximal effect
 Undesirable effects may limit dosage
 - Therapeutic index = margin of safety difference between:
 - dose → desired effect
 - dose → undesirable effects.

Individual Responses

- 1. Pharmacokinetics
- 2. Bioavailability
- 3. Renal function
- 4. Liver function
- 5. Cardiac function
- 6. Patient age elderly vulnerable to cumulative drug effects.
- 7. Pharmacodynamics
- 8. Enzyme activity (e.g. smoking / alcohol)
- 9. Genetic differences (e.g. atypical cholinesterase activity)
- 10. Drug interactions

Age Effects

Aging does not -> changes in receptor responsiveness Variations in drug response reflect : 1. **Cardiac output** 2. fat compartment 3. **Frotein binding** 4. **Frenal function.**

Idiosyncrasy

is present when an unusual effect of a drug occurs in a small % of patients *regardless of the dose of drug*.

Tolerance

= hyporeactivity from chronic exposure.

- Cross-tolerance develops between drugs of different classes that produce similar pharmacologic effects (e.g ETOH / inhaled agent).
- *Tachyphylaxis* = tolerance that develops acutely within only a few doses of a drug (*e.g. thiopental*).